3D PRINTERS 3D PRINTING NEWS TECH NEWS

Dynamic 3D Printing Process with the ability to change printing direction ‘on-the-fly’

dynamic 3D printing process
Above: This tiny Eiffel Tower was produced using a new dynamic 3D printing process that has the ability to change printing direction on the fly/Image Source: Northwestern University

Engineers from Northwestern University, a private research university in Evanston, Illinois, have developed a new dynamic 3D printing process that uses light to drastically improve the 3D printing speed and precision while also being able to change the printing direction “on-the-fly”.

Such an instant change in direction is made possible by using a high-precision robotic arm to provide the freedom to move, rotate or dilate each layer as the structure is being built.

New Dynamic 3D Printing Process

dynamic 3D printing process
Above: The new dynamic 3D printing process developed at Northwestern University uses light and a high-precision robot arm to print a variety of structures. (A double helix is shown)/Image Source: Northwestern University

Most conventional 3D printing processes rely on replicating a digital design model that is sliced into layers with the layers printed and assembled upwards like a cake. The Northwestern method introduces the ability to manipulate the original design layer by layer and pivot the printing direction without recreating the model. This “on-the-fly” feature enables the printing of more complicated structures and significantly improves manufacturing flexibility.

According to Cheng Sun, associate professor of mechanical engineering at Northwestern’s McCormick School of Engineering, “The dynamic 3D printing process is no longer a way to merely make a replica of the designed model. Now we have a dynamic process that uses light to assemble all the layers but with a high degree of freedom to move each layer along the way.”

Sun led the research, which lies at the intersection of two of his main areas of focus: nanofabrication and optics. The study was published by the journal Advanced Materials. The title of the paper is “Conformal Geometry and Multimaterial Additive Manufacturing through Freeform Transformation of Building Layers.”

In the paper, the researchers demonstrate several applications, including 3D printing a customized vascular stent and printing a soft pneumatic gripper made of two different materials, one hard and one soft. A double helix and a tiny Eiffel Tower are two other printed examples in the study.

The Northwestern process uses a robotic arm and a liquid photopolymer that is activated by light. Sophisticated 3D structures are pulled out from a bath of liquid resin by a high-precision robot with enhanced geometric complexity, efficiency and quality compared to the traditional printing process. The arm is used to change the printing direction dynamically.

Sun said, “We are using light to do the manufacturing. Shining light on the liquid polymer causes it to crosslink, or polymerize, converting the liquid to a solid. This contributes to the speed and precision of our 3D printing process — two major challenges that conventional 3D printing is facing.”

The continuous printing process can print 4,000 layers in approximately two minutes.

Sun concluded, “This is a very fast process, and there is no interruption between layers. We hope the manufacturing industry will find benefit in it. The general printing method is compatible with a wide range of materials.”

Looking to the future, Sun said this printing process could be applied to other additive as well as traditional subtractive manufacturing processes, providing a bridge toward a truly hybrid process.


About Manufactur3D Magazine: Manufactur3D is an online magazine on 3D Printing. Visit our Tech News page for more updates on 3D Printing Technology News. To stay up-to-date about the latest happenings in the 3D printing world, like us on Facebook or follow us on LinkedIn.