Oxford researchers 3D printed human stem cells; Advance a new way to repair brain injuries

3 Mins read
Oxford researchers 3D printed human stem cells to advance way to repair brain injuries
Oxford researchers 3D printed human stem cells to advance way to repair brain injuries/Source: Oxford University

Researchers from the University of Oxford 3D printed human stem cells and created a two-layered brain tissue in a new study. When implanted into mouse brain slices, these cells demonstrated convincing structural and functional integration with the host tissue.

A ground-breaking technique developed by researchers at the University of Oxford could one day provide tailored repairs for people who have suffered brain injuries. For the first time, the researchers demonstrated that neural cells can be 3D printed to mimic the architecture of the cerebral cortex. The findings were published today in the journal Nature Communications. 

3D Printed Human Stem Cells

The cells’ cortical structure was created using human induced pluripotent stem cells (hiPSCs), which have the ability to produce all cell types found in most human tissues. One significant advantage of using hiPSCs for tissue repair is that they can be easily derived from cells harvested from patients themselves, avoiding an immune response.

Using specific combinations of growth factors and chemicals, the hiPSCs were differentiated into neural progenitor cells for two different layers of the cerebral cortex. After suspending the cells in solution, two ‘bioinks’ were created, which were then printed to create a two-layered structure. The printed tissues retained their layered cellular architecture in culture for weeks, as evidenced by the expression of layer-specific biomarkers.

The Impact of the research

Brain injuries, such as those caused by trauma, stroke, and brain tumour surgery, typically result in significant damage to the cerebral cortex (the outer layer of the human brain), resulting in difficulties with cognition, movement, and communication. For example, approximately 70 million people worldwide suffer from traumatic brain injury (TBI) each year, with 5 millions of these cases being severe or fatal. There are currently no effective treatments for severe brain injuries, which has a serious impact on quality of life.

Tissue regenerative therapies, particularly those in which patients receive implants derived from their own stem cells, could be a promising future treatment option for brain injuries. However, there has been no way to ensure that implanted stem cells mimic the architecture of the brain until now.

This advance marks a significant step towards the fabrication of materials with the full structure and function of natural brain tissues. The work will provide a unique opportunity to explore the workings of the human cortex and, in the long term, it will offer hope to individuals who sustain brain injuries.

– Lead author Dr. Yongcheng Jin, Department of Chemistry, University of Oxford

Testing on Mice

Integration of 3D printed cerebral cortical tissue into an ex vivo lesioned brain slice
Integration of 3D printed cerebral cortical tissue into an ex vivo lesioned brain slice/Source: Nature

When the printed tissues were implanted into mouse brain slices, they showed strong integration as evidenced by neural process projection and neuron migration across the implant-host boundary. The signalling activity of the implanted cells correlated with that of the host cells. This indicates that the human and mouse cells were communicating with one another, demonstrating both functional and structural integration.

“Our droplet printing technique provides a means to engineer living 3D tissues with desired architectures, which brings us closer to the creation of personalised implantation treatments for brain injury.”

– Senior author, Dr. Linna Zhou, Department of Chemistry, University of Oxford

The researchers plan to improve the droplet printing technique in order to create complex multi-layered cerebral cortex tissues that more realistically mimic the architecture of the human brain. These engineered tissues may be used in drug evaluation, brain development studies, and to improve our understanding of the basis of cognition, in addition to repairing brain injuries.

The new breakthrough builds on the team’s decade-long record of developing and patenting 3D printing technologies for synthetic tissues and cultured cells.

According to senior author Professor Hagan Bayley at the Department of Chemistry, University of Oxford, “This futuristic endeavour could only have been achieved by the highly multidisciplinary interactions encouraged by Oxford’s Martin School, involving both Oxford’s Department of Chemistry and the Department of Physiology, Anatomy and Genetics.”

The study ‘Integration of 3D-Printed Cerebral Cortical Tissue into an ex vivo Lesioned Brain Slice’ has been published in Nature Communications.

About Manufactur3D Magazine: Manufactur3D is an online magazine on 3D Printing. Visit our Global News page for more updates on Global 3D Printing News. To stay up-to-date about the latest happenings in the 3D printing world, like us on Facebook or follow us on LinkedIn and Twitter.

1999 posts

About author
Manufactur3D is an Indian Online 3D Printing Media Platform that reports on the latest news, insights and analysis from the Indian and the Global 3D Printing Industry.
Related posts

AMGTA's new Research shows the Environmental Benefits of Material Jetting in Fashion Footwear

2 Mins read
The AMGTA has released the findings of a life-cycle inventory (LCI) study on the environmental benefits of 3D material jetting in fashion footwear.

New Process for 3D Printing Glass Microstructures at Low Temperature with Fast Curing

3 Mins read
Georgia Tech researchers has developed a new method for 3D printing glass lenses and other structures that could be used in medical devices and

IISc researchers develop new and sustainable 3D Printing Construction Materials

2 Mins read
Researchers from the Indian Institute of Science have pioneered ground-breaking 3D printing construction materials and processes that could