Subscribe
MATERIALS

Penn State researchers to replace 3D printing plastics with new plant-derived resins

2 Mins read
Penn State researchers develop sustainable resin to replace large-format 3D printing plastics
Doctoral degree candidates James Godwin, left, and Kassem Bokhari inspect a 3D-printed tensile-testing specimen/Source: Penn State/Credit: Michael Houtz

Researchers at Penn State University are working to replace large-format 3D printing plastics with plant-derived sustainable resins. A sustainable resin material made from agriculturally derived components could be a step forward in the construction of large objects. According to Penn State agricultural and biological engineers, the new resin can be used to make furniture, boats, and other similar sized objects.

The team’s effort to develop a substitute for currently available expensive, highly engineered resin materials that are mixtures of petrochemically derived components will be supported by a three-year, $650,000 grant from the United States Department of Agriculture’s National Institute of Food and Agriculture.

Replace 3D printing plastics with new plant-derived resins

Stereolithography is a 3D object creation technique that uses a computer-controlled moving laser beam to build up a required structure layer by layer from a liquid polymer that hardens when exposed to laser light.

“Our project team’s long-term goal is to develop new and sustainable bioproducts from lignocellulosic biomass — or dry plant matter — that economically enable a low-carbon bioeconomy. The objective of this proposal, which is a step toward our long-term goal, is to create a renewable resin material comprised of agriculturally derived components that will enable large-format 3D printing by stereolithography.”

– Stephen Chmely, Team leader and assistant professor of agricultural and biological engineering in the College of Agricultural Sciences

The researchers are working to create renewable stereolithography resins containing these biomaterials and soybean oil by developing chemical transformations of plant-derived materials lignin and nanocellulose. Lignin is a complex organic polymer found in many plant cell walls that makes them rigid and woody. Nanocellulose is made up of tiny particles that are typically made from wood pulp, but it can also be made from any cellulosic plant material.

According to Chmely, nanocellulose is a “exciting class” of cellulose materials with properties and functionalities distinct from bulk cellulose and wood pulp. As a result, it is being developed for uses that were previously thought to be impossible for cellulosic materials.

Chmely expressed that the team hopes to demonstrate that the new resins have higher elasticity, toughness, and thermal resistance than existing commercial resins. The properties of the new materials will be evaluated by the researchers using spectroscopic and microscopic investigations, mechanical testing, and thermal analysis.

Latest update on the research

The team is well positioned to conduct this research because it is part of Penn State’s Department of Agricultural and Biological Engineering, which provides members with a unique perspective at the intersection of materials science and engineering with agriculture and forestry, according to Chmely.

Chmely concluded that the team has a wealth of expertise in lignin chemistry, cellulose nanomaterials and 3D printing by stereolithography. He added, “Collectively, these breakthroughs will have significant positive impacts on industries working in additive manufacturing and biorefining, on academic researchers working in the fields of materials science and biomass chemistry, and on rural communities that provide biomass feedstocks for these efforts as they are scaled up and deployed.”


About Manufactur3D Magazine: Manufactur3D is an online magazine on 3D Printing. Visit our Tech News page for more updates on Global 3D Printing News. To stay up-to-date about the latest happenings in the 3D printing world, like us on Facebook or follow us on LinkedIn and Twitter.

281 posts

About author
Abhimanyu Chavan is the founder of Manufactur3D Magazine. He writes on Additive Manufacturing technology, interviews industry leaders, shares industry insights, and expresses his thoughts on the latest developments in the industry. You can follow him on LinkedIn, Twitter and Instagram.
Articles
Related posts
MATERIALS

Materialise adds three New Materials to make Industrial 3D Printing accessible

2 Mins read
Materialise expands its additive manufacturing portfolio to make industrial 3D printing accessible to companies from various industries to use
GLOBAL NEWSMATERIALS

Filamentive launches Free PLA 3D Printing Waste Recycling

2 Mins read
Filamentive has taken a significant step forward by announcing the launch of a Free PLA 3D Printing Waste Recycling Scheme. This initiative is
AEROSPACE

Stratasys to test 3D printed material performance on Moon

2 Mins read
Stratasys to provide 3D printed materials for an upcoming lunar mission. The idea is to test its 3D printed material performance on Moon. The