Researchers Pioneer Droplet-based 3D Printing Technology using Microfluidics

3 Mins read
Droplet-based 3D Printing Technology

Above: Material printed with the Wan Lab’s new droplet-based 3D printing method/Image Credit: Jiandi Wan

Chemical engineering assistant professor Jiandi Wan from the University of California, Davis pioneered a new droplet-based 3D printing technology using microfluidics. The microfluidic approach enabled the research team to efficiently print finely-tuned flexible materials with potential applications in soft robotics, tissue engineering, and wearable technology.

The research has been published in the Proceedings of the National Academy of Sciences of the United States (PNAS).


Droplet-based 3D Printing Technology

Above: Droplet-based 3D printing technology printing a hollow tube using water-in-PDMS/Image Credit: PNAS

Traditional material extrusion 3D printing technology uses a nozzle through which the material is deposited or added on top of the previous layer repeatedly until the product is complete. This method, though efficient and affordable, makes it hard to print structures made of more than one material, and getting the right amount of softness can be challenging.

Wan’s group noticed that this nozzle was similar to the glass capillary microfluidic devices they had been studying, which involve multiple nozzles placed inside of each other, and realized they had a new application for the technology.

Wan explained, “Most extrusion-based 3D printers use very simple nozzles and since we had already developed these glass microfluidics, we thought, ‘why not apply it to 3D printing?”

Wan’s device uses a multi-phase drip system to encapsulate droplets of an aqueous polyethylene glycol diacrylate (PEGDA) solution inside of a common silicon-based organic polymer called polydimethylsiloxane (PDMS). The PDMS flows around a dripper, which makes tiny droplets of the PEGDA that it evenly inserts into the PDMS as both materials flow onto the structure that’s being printed.

The resulting structure looks like a Pac-Man maze, with little dots of PEGDA droplets surrounded by PDMS. Once the PEGDA diffuses out of the droplets, it interferes with the polymerization process of PDMS, chemically softening the material and making the structure more flexible.

Wan added, “You can also encapsulate other chemicals in the droplets to make the overall matrix much softer or harder.”

[penci_related_posts taxonomies=”undefined” title=”Related Posts” background=”” border=”Green” thumbright=”yes” number=”4″ style=”grid” align=”none” displayby=”cat” orderby=”random”]

Wan and his team also showed that the droplet-based 3D printing technology can be used to produce flexible porous constructs and constructs with encapsulated polymer particles and metal droplets. Besides, the structure flexibility can be easily tuned by changing the droplet size and flow rate. This gives researchers a wide range of options to truly design their material structure and vary flexibility to fit their needs in a way that’s difficult with the nozzle-based method.

Though microfluidic-based 3D printing has been done before, Wan’s group is the first to use this droplet-based multiphase emulsion approach. The team is already looking into potential applications and learning what other combinations of materials they can use to change the mechanical or chemical properties of 3D-printed products. They think the work could have applications in bioprinting and wearable electronics like smart fabrics.

Wan commented on the application of the newly invented droplet-based 3D printing technology, “I think this will open a new area of research since applying the established microfluidics technology to 3D printing represents a new direction to go.”

PNAS is the official journal of the National Academy of Sciences and one of the most-cited, highest-impact and most selective scientific journals in the world. The article, led by Ph.D. student Toby Mea and titled, “On-demand modulation of 3D printer elastomers using programmable droplet inclusions,” is available at PNAS’ website.

Wan concluded his effort saying, “It’s really hard to get a paper published there, so my students and I are quite excited. We’re excited by the novelty of this paper and its potential applications.”

About Manufactur3D Magazine: Manufactur3D is an online magazine on 3D Printing. Visit our Tech News page for more updates on 3D Printing Technology News. To stay up-to-date about the latest happenings in the 3D printing world, like us on Facebook or follow us on LinkedIn.

2005 posts

About author
Manufactur3D is an Indian Online 3D Printing Media Platform that reports on the latest news, insights and analysis from the Indian and the Global 3D Printing Industry.
Related posts

Beckman Institute researchers develop new sustainable technique to 3D print multiple colours from a single ink

2 Mins read
Beckman Institute researchers developed a new sustainable method to 3D print multiple colours using a single ink. The process can

Scrona and Avantama collaborate to redefine Quantum Dot Processing with EHD inkjet printing

3 Mins read
Scrona and Avantama have successfully processed high-performance quantum dot (QD) ink using Scrona’s EHD inkjet printing.

New Metal 3D Printing process allows structural modifications to be programmed into the print

3 Mins read
University of Cambridge researchers have developed a new metal 3D printing method that could help reduce costs and make better use of