Subscribe
AEROSPACE

ORNL Researchers 3D Print Moon Rover Wheel Prototype With NASA

3 Mins read
ORNL researchers 3D print moon rover wheel prototype in collaboration with NASA
ORNL researchers 3D print moon rover wheel prototype in collaboration with NASA/Source: ORNL

Researchers at the Department of Energy’s Oak Ridge National Laboratory have taken additive manufacturing to the final frontier as they 3D print moon rover wheel prototype in collaboration with NASA. This is the same design as NASA’s robotic lunar rover, demonstrating the technology for specialised parts required for space exploration.

The additively manufactured wheel was modelled after the existing, light-weight wheels of the Volatiles Investigating Polar Exploration Rover, or VIPER, a mobile robot NASA plans to send to the moon’s south pole in 2024 to map ice and other potential resources. The mission’s goal is to determine the origin and distribution of the moon’s water, as well as whether enough water can be harvested from the moon’s surface to sustain people living there.

Researchers 3D Print Moon Rover Wheel Prototype

NASA is already testing a prototype pressurized moon rover in Northern Arizona
(Image for representation purpose) NASA is already testing a prototype pressurised moon rover in Northern Arizona/Source: NASA

While the prototype wheel printed at DOE’s Manufacturing Demonstration Facility at ORNL will not be used on the NASA Moon mission, it was designed to meet the same design specifications as the wheels used on NASA’s VIPER. More testing is planned to validate the design and fabrication method before applying it to future lunar or Mars rovers or considering it for other space applications such as large structural components.

Additive manufacturing can reduce energy consumption, material waste, and lead time while increasing design complexity and material property tailoring. MDF has been at the forefront of this effort for over a decade, developing the technology for a wide range of applications in the clean energy, transportation, and manufacturing sectors. In the autumn of 2022, MDF researchers will print the rover wheel prototype at ORNL. To selectively melt metal powder into the designed shape, a specialised 3D printer used two coordinated lasers and a rotating build plate.

“This dramatically increases the production rate with the same amount of laser power. We’re only scratching the surface of what the system can do. I really think this is going to be the future of laser powder bed printing, especially at large scale and in mass production.”

– Peter Wang, who leads MDF development of new laser powder bed fusion systems

The prototype wheel is about 8 inches wide and 20 inches in diameter, which is much larger than typical parts printed with metal powder bed systems. Its creation necessitated the ability to print small geometric features spread across a large work area. The use of additive manufacturing allowed for greater complexity in the rim design without increasing the cost or manufacturing difficulty.

Members of the team that printed the rover wheel prototype display the result in front of the laser powder bed printer where it was created in the MDF
Members of the team that printed the rover wheel prototype display the result in front of the laser powder bed printer where it was created in the MDF/Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In comparison, the four VIPER wheels that will churn through moon dust next year necessitated numerous manufacturing and assembly steps. The 50-piece wheel rim of VIPER is held together by 360 riveted joints. To meet the mission’s stringent requirements, the manufacturing process required complex and time-consuming machining.

If NASA testing shows that the 3D printed prototype is as strong as conventionally built wheels, future rovers could use a single printed wheel rim, which took ORNL 40 hours to create. ORNL and NASA engineers also investigated printing precise design features such as angled sidewalls, a domed shape, and wavy tread to increase the wheel’s stiffness during the project.

Traditional fabrication methods make it difficult to incorporate these characteristics into the current VIPER wheel design. Despite the fact that 3D printing allows for a more complex spoke pattern and spoke locking features on the wheel, it simplifies and reduces the cost of the wheel design and makes final assembly easier.

The specialised printer only builds with specific materials – in this case, a nickel-based alloy – so the 3D-printed wheel is 50% heavier than the aluminium VIPER wheel despite being printed at the same thickness.

NASA intends to test the performance of the 3D-printed wheel on a rover in the rock yard at NASA’s Johnson Space Centre or in a massive “sandbox” of simulated lunar rocks and soil at a contracted test facility. The wheel’s manoeuvrability, pivoting resistance, sideways slippage, slope climbing, and other performance metrics will be evaluated.

“Crewed research stations placed on the moon as part of the agency’s Artemis Program will need off-planet manufacturing capability. Being able to build parts in space for repairs will be important, because you just can’t take enough spares. Powder, pellets or filament for printing are a lot easier to pack and would allow for more flexibility.”

– Richard Hagen, a mechanical design engineer for NASA and additive manufacturing lab manager at NASA’s Johnson Space Center in Houston

Jay Reynolds, Gordon Robertson, Greg Larsen, Jamie Stump, Michael Borish, Chris Ledford, Ryan Dehoff, and former ORNL staff member Charles Wade are also involved in the project, with technical assistance from Ryan Duncan and Jeremy Malmstead.


About Manufactur3D Magazine: Manufactur3D is an online magazine on 3D Printing. Visit our Global News page for more updates on Global 3D Printing News. To stay up-to-date about the latest happenings in the 3D printing world, like us on Facebook or follow us on LinkedIn and Twitter. Follow us on Google News.

304 posts

About author
Abhimanyu Chavan is the founder of Manufactur3D Magazine. He writes on Additive Manufacturing technology, interviews industry leaders, shares industry insights, and expresses his thoughts on the latest developments in the industry. You can follow him on LinkedIn, Twitter and Instagram.
Articles
Related posts
AEROSPACE

The Exploration Company to 3D print spacecraft components using TRUMPF technology

2 Mins read
TRUMPF and The Exploration Company is working together to 3D print spacecraft components for missions in Earth’s orbit and to the Moon.
MATERIALS

Markforged Unveils Vega™ - A New High-Performance Material for Aerospace 3D Printing

1 Mins read
Markforged recently announced the release of Vega™, an ultra high-performance material that can revolutionize the aerospace manufacturing
AEROSPACE

NASA develops new and Innovative Aluminium 3D Printed Rocket Nozzle

3 Mins read
NASA recently built and tested an innovative 3D printed rocket nozzle made of aluminium, under the RAMFIRE project making it lighter than